energyNP.com  
Tel
98510-91900 
Email
energyNP@hotmail.com 
Menu

 
 
News  
Back to energy news list >>>
 

 
 
 Air Conditioner
 Battery
 Booster Pump
 Charger
 Cold Storage Room
 Electric Power Tools
 Electric Water Heater
 Garbage Disposal
 Station
 Generator
 Heat Pump
 Inverter
 Power Supply
 Rectifiers
 Self Priming Pump
 Solar Energy
 Solar Water Heater
 Transformer
 UPS
 Voltage Stabilizer
 Wind Energy
 
  Paper-Thin Solar Makes Any Surface Photovoltaic Unroll This Solar Carpet Onto A Roof—Or Any Other Surface That Sees Sunlight

MIT researchers have made solar panels thinner than human hair that provide 18 times as much power per kilogram as today’s glass and silicon-based solar panels. These solar cells are in fact one-hundredth the weight of conventional photovoltaics.

Should it be possible one day to scale up this technology, the implications could be sizable. Hundreds of thousands of warehouses dot the American landscape. Their large roofs are prime real estate for solar-power installations, but they wouldn’t be able to bear the weight of today’s silicon solar panels, says Vladimir Bulovi?, a professor of electrical engineering and computer science at MIT. “If we had lighter-weight solar panels, we would be able to get those roofs very quickly electrified.”

We now do, Bulovi? says. He envisions one day being able to buy a large carpet of solar cells “and simply unroll it on a roof.”

The ultrathin solar cells could also be laminated onto boat sails, drone wings, and tents. They could be especially useful for providing power in remote areas and during disaster-relief operations.

The weight of silicon solar panels has kept solar power from being deployed more rapidly than it has so far, Bulovi? says. Thin-film solar cells, such as the ones made by First Solar, are lighter and also easier and cheaper to make. But they are still deposited on a sheet of glass, so the final modules become just as heavy as conventional ones.

Reducing the weight of solar cells would allow manufacturers to make much larger solar panels and also make installation dramatically cheaper, he says. The few attempts at making superthin solar cells on flexible plastic films so far have yielded very tiny experimental devices—or they’ve been fragile or do not have the best performance for practical use.

MIT researchers have made solar panels thinner than human hair that provide 18 times as much power per kilogram as today’s glass and silicon-based solar panels. These solar cells are in fact one-hundredth the weight of conventional photovoltaics.

Should it be possible one day to scale up this technology, the implications could be sizable. Hundreds of thousands of warehouses dot the American landscape. Their large roofs are prime real estate for solar-power installations, but they wouldn’t be able to bear the weight of today’s silicon solar panels, says Vladimir Bulovi?, a professor of electrical engineering and computer science at MIT. “If we had lighter-weight solar panels, we would be able to get those roofs very quickly electrified.”

We now do, Bulovi? says. He envisions one day being able to buy a large carpet of solar cells “and simply unroll it on a roof.”

“There’s nothing stopping the scalability of the process.”—— Vladimir Bulovi?, MIT

The ultrathin solar cells could also be laminated onto boat sails, drone wings, and tents. They could be especially useful for providing power in remote areas and during disaster-relief operations.

The weight of silicon solar panels has kept solar power from being deployed more rapidly than it has so far, Bulovi? says. Thin-film solar cells, such as the ones made by First Solar, are lighter and also easier and cheaper to make. But they are still deposited on a sheet of glass, so the final modules become just as heavy as conventional ones.

Reducing the weight of solar cells would allow manufacturers to make much larger solar panels and also make installation dramatically cheaper, he says. The few attempts at making superthin solar cells on flexible plastic films so far have yielded very tiny experimental devices—or they’ve been fragile or do not have the best performance for practical use.

The MIT team coated a sheet of plastic with a layer of parylene a few micrometers thick. Parylene is electrically insulating and protects against moisture and chemical corrosion. On top of this, the researchers deposited different solar-cell layers using printable inks made of various materials. The entire solar-cell structure is 2 to 3 micrometers thick. The researchers chose an organic semiconductor for the active light-to-electricity conversion layer, and silver nanowires and a conductive polymer as the transparent electrodes. You could also use perovskites for the light conversion, Bulovi? says. Those materials would give higher efficiency, but they degrade in moisture and oxygen.

Next, the team put a few micrometers of glue around the edges of the finished solar cells and brought them into contact with a strong, lightweight, commercially available performance fabric. Then they pulled off the fabric, peeling with it the very thin parylene substrate and the solar stack on top of it, which transferred the solar modules to the fabric.

The fabric modules had a power density of 370 watts per kilogram and weighed 0.1 kilogram per square meter. Commercial residential silicon solar panels, by contrast, have a power density of 20 W/kg and weigh 10.7 kg/m2 while cadmium-telluride thin-film solar modules on glass substrates have a specific power of 13 W/kg and weigh 14 kg/m2.

While the laboratory-scale devices Bulovi?’s team has made are about 10 x 10 centimeters in size, he says that “everything that we’ve demonstrated can be made bigger; there’s nothing stopping the scalability of the process.”

The paper-thin solar cells will need to be stable for use in the real world. The researchers plan to do more extensive testing and to make a lightweight encapsulation layer that can withstand the elements and keep the solar cells safe and working for years. “These cells as they are could last one or two years without packaging,” Bulovi? says. “With packaging, we could extend that to five to 10 years. And that’s plenty.”

Bulovi? already has three startups under his belt, including quantum-dot electronics company QD Vision, which was acquired by Samsung, and Ubiquitous Energy, which is making transparent solar cells. He now plans to further develop and commercialize the new ultrathin solar cells through a newly launched startup, Active Surfaces.

The researchers presented their new device in a paper published this month in the journal Small Methods.

[23 December, 2022 / world-energy.org ]   
 
 
Voltage Stabilizer Nepal Kathmandu
 
UPS Nepal Kathmandu
 
Lithium iron battery LiFePO4 Battery Nepal Kathmandu
 
Inverter Hybrid On-grid Off-Grid Energy Storage Solar Inverter Nepal Kathmandu
 
Solar Water Heater Nepal Kathmandu
 
GREE Air Conditioner Residential Nepal Kathmandu
 
Solar Water Heater Nepal Kathmandu
 
Gree Air Purifier Kills Novel Coronavirus Nepal Kathmandu
 
Battery Charger Nepal Kathmandu
 
Complete Power Solution
 
 
 
 
Solar Water Heater Nepal Kathmandu Solar Energy Nepal Kathmandu Wind Power Nepal Kathmandu Power Generator Nepal Kathmandu Voltage Stabilizer Nepal Kathmandu Transformer Nepal Kathmandu AirConditioner Nepal Kathmandu Battery Nepal Kathmandu UPS System Nepal Kathmandu Rectifier Nepal Kathmandu
 
 
Link: The Official Portal of Goverment of Nepal Nepal Electricity Authority Nepal Alternative Energy Promotion Centre Nepal Telecom Nepal Department of Agriculture Nepal Department of Industry wow Nepal! Nepal Global Buying SIMONES Industries|Nepal Power Solution
  Nepal Goverment Nepal Electricity Authority Nepal Alternative Energy Promotion Centre Nepal Telecom Nepal Department of Agriculture Nepal Department of Industry wow-Nepal | Nepal Global Buying SIMONES Industries |Nepal Power Solution
 
Fair: Investment Summit Nepal Himalayan Hydro Expo Nepal Kathmandu China International Import Expo China Import and Export Fair China-South Asia Exposition Guangzhou Int’l Refrigeration, Air-Condition, Ventilation, Air-Improving Equipment Exhibition Guangzhou International Solar Photovoltaic Exhibition Asia Battery Sourcing Fair
  Investment Summit Nepal Himalayan Hydro Expo Nepal China International Import Expo China Import and Export Fair China-South Asia Exposition Int'l Refrigeration, Air-Condition Fair Int'l Solar Photovoltaic Exhibition Asia Battery Sourcing Fair
 
Copyright @ 2014 All right reserved. Simones Industries