energyNP.com  
Tel
98510-91900 
Email
energyNP@hotmail.com 
Menu

 
 
News  
Back to energy news list >>>
 

 
 
 Air Conditioner
 Battery
 Booster Pump
 Charger
 Cold Storage Room
 Electric Power Tools
 Electric Water Heater
 Garbage Disposal
 Station
 Generator
 Heat Pump
 Inverter
 Power Supply
 Rectifiers
 Self Priming Pump
 Solar Energy
 Solar Water Heater
 Transformer
 UPS
 Voltage Stabilizer
 Wind Energy
 
  NEA announces power outage for 8 hours in some places of Kathmandu and Lalitpur on Saturday

The lithium-ion batteries used to power electric vehicles are key to a clean energy economy. But their electrodes are usually made using a wet slurry with toxic solvents, an expensive manufacturing approach that poses health and environmental risks.

Early experiments at the Department of Energy's Oak Ridge National Laboratory have revealed significant benefits to a dry battery manufacturing process. This eliminates the solvent while showing promise for delivering a battery that is durable, less weighed down by inactive elements and able to maintain high energy storage capacity after use. Such improvements could boost wider EV adoption, helping to reduce carbon emissions and achieve U.S. climate goals.

The research is published in the Chemical Engineering Journal.

Dry processing is a relatively new alternative that saves factory floor space as well as time, energy, waste disposal and startup expenses. However, until now, researchers have had limited understanding of how and why it works.

ORNL and industry partner Navitas Systems probed how the dry process affects the structure of battery materials and their electrochemical properties. Batteries generate energy as lithium ions travel between electrodes called the cathode and anode. The team focused on an electrode dry processing strategy, which involves mixing dry powders with a binder, then compacting the material to improve contact between the particles. This strategy could be applied to both the anode and cathode by focusing on either certain materials or mixing methods.

After Navitas made the electrodes, ORNL researchers, led by Jianlin Li and Runming Tao, measured their electrochemical performance in different conditions over various timeframes. The ORNL team was able to reach a new understanding of how the dry-processed electrodes degrade.

The batteries made using the dry process showed a "superb" ability to maintain their capacity after extended use, according to the study results. The dry process batteries are "highly chemically desirable" because their structure allows lithium ions to take a more direct path between the anode and cathode, researchers found. The electrodes are thicker to allow higher energy loading while reducing inactive ingredients that increase size and weight.

"There are more active materials in the electrode," Tao said. "And even after cycling, it will have few cracks." These two advantages reflect a high energy density and good long-term cyclability. The electrode can bend and flex well, demonstrating excellent mechanical strength and the winding capability needed for mass production of batteries.

The dry process could offer a variety of benefits to manufacturers and the U.S. supply chain: It's highly compatible with current state-of-the-art electrode manufacturing equipment, while its reduced environmental impact makes battery plants suitable in more places.

"When you're looking at the gigascale factories, you're looking at billions of dollars in order to scale batteries up," said Bryan Steinhoff, technical lead and lead researcher on the project for Navitas. "Dry processing can eliminate the coating and solvent equipment currently necessary for large-scale battery production. If you can use a dry process instead, you can reduce your footprint by up to 40 or 50%, saving hundreds of millions of dollars and starting to enable the creation of an infrastructure to replace one that is largely dependent on Asia at the moment."

The next step in the research is stabilizing the material that attaches the anode components to a thin metal current collector. "A main goal for this project is to develop or identify a better binder for the dry process, because the current binder is not very stable for the anode environment," Li said. The team is also working on reducing the amount of carbon black, a material that maintains battery conductivity but detracts from its energy density.

ORNL and Navitas researchers continue to refine the process to improve electrochemical performance. The goal is to balance the benefits and drawbacks of the thicker electrode: It has the potential for higher energy loading and is easy to roll, but it may provide less power, since the ions have further to travel.

by techxploreThe supply of electricity will be disrupted in some places of Kathmandu and Lalitpur on Saturday.

The Nepal Electricity Authority (NEA) has announced a scheduled power outage in certain areas of Kathmandu and Lalitpur on Saturday. The outage will occur from 8:30 am to 4:30 pm as the work is being done to upgrade the Teku substation and charge the Teku-Syuchatar 66 KV line to 132 KV.

According to the NEA, electricity will be affected in Sanepa, Ram Mandir, Gusingal, Advance College, Amravati and Radiant School areas under Bagmati feeder. Similarly, electricity will be affected in Balkhu, Jhamsikhel, Pulchowk and Thado Dhunga areas under Pulchowk feeder.

Similarly, NEA said that electricity will be affected in areas such as Gyan Tirtha Marg Kalimati Salik Chowk, Chhauni, Dallu, Bijeshwari, Swayambhu, Balkhu, Khasibazar, Tribhuvan University under Kirtipur feeder under Chamati feeder.

"Teku Syuchatar 66 KV line is being charged at 132 KV. To complete the construction of the first phase of the substation, the existing incomer-1 panel and one of the two power transformers of the Teku substation have to be shut down. Since the supply is being done from the Teku substation, the electricity service will be affected in the feeders mentioned in various areas," said the officials of the NEA.

The NEA has stated that efforts will be made to restore the line by completing the work in those areas before the scheduled time.

[21 July, 2023 / nagariknetwork.com ]   
 
 
Voltage Stabilizer Nepal Kathmandu
 
UPS Nepal Kathmandu
 
Lithium iron battery LiFePO4 Battery Nepal Kathmandu
 
Inverter Hybrid On-grid Off-Grid Energy Storage Solar Inverter Nepal Kathmandu
 
Solar Water Heater Nepal Kathmandu
 
GREE Air Conditioner Residential Nepal Kathmandu
 
Solar Water Heater Nepal Kathmandu
 
Gree Air Purifier Kills Novel Coronavirus Nepal Kathmandu
 
Battery Charger Nepal Kathmandu
 
Complete Power Solution
 
 
 
 
Solar Water Heater Nepal Kathmandu Solar Energy Nepal Kathmandu Wind Power Nepal Kathmandu Power Generator Nepal Kathmandu Voltage Stabilizer Nepal Kathmandu Transformer Nepal Kathmandu AirConditioner Nepal Kathmandu Battery Nepal Kathmandu UPS System Nepal Kathmandu Rectifier Nepal Kathmandu
 
 
Link: The Official Portal of Goverment of Nepal Nepal Electricity Authority Nepal Alternative Energy Promotion Centre Nepal Telecom Nepal Department of Agriculture Nepal Department of Industry wow Nepal! Nepal Global Buying SIMONES Industries|Nepal Power Solution
  Nepal Goverment Nepal Electricity Authority Nepal Alternative Energy Promotion Centre Nepal Telecom Nepal Department of Agriculture Nepal Department of Industry wow-Nepal | Nepal Global Buying SIMONES Industries |Nepal Power Solution
 
Fair: Investment Summit Nepal Himalayan Hydro Expo Nepal Kathmandu China International Import Expo China Import and Export Fair China-South Asia Exposition Guangzhou Int’l Refrigeration, Air-Condition, Ventilation, Air-Improving Equipment Exhibition Guangzhou International Solar Photovoltaic Exhibition Asia Battery Sourcing Fair
  Investment Summit Nepal Himalayan Hydro Expo Nepal China International Import Expo China Import and Export Fair China-South Asia Exposition Int'l Refrigeration, Air-Condition Fair Int'l Solar Photovoltaic Exhibition Asia Battery Sourcing Fair
 
Copyright @ 2014 All right reserved. Simones Industries