energyNP.com  
Tel
98510-91900 
Email
energyNP@hotmail.com 
Menu

 
 
News  
Back to energy news list >>>
 

 
 
 Air Conditioner
 Battery
 Booster Pump
 Charger
 Cold Storage Room
 Electric Power Tools
 Electric Water Heater
 Garbage Disposal
 Station
 Generator
 Heat Pump
 Inverter
 Lead Acid Battery
 LiFePO4 Battery
 Power Supply
 Rectifiers
 Self Priming Pump
 Solar Energy
 Solar Water Heater
 Transformer
 Treadmill
 UPS
 Voltage Stabilizer
 Wind Energy

 
Portable Electric Car Charger | Portable EV Charger | Portable Charger for Home Use | Charging Station for Home Use | Kathmandu Nepal
 
Electric Folded Treadmill Nepal Kathmandu
 
Gree Air Conditioner Nepal Kathmandu
 
Solar Water Heater Nepal Kathmandu
 
Solar Water Heater Nepal Kathmandu
 
Gree Air Purifier Kills Novel Coronavirus Nepal Kathmandu
 

 

 
  New Research Suggests Optimal Tilt Angle, Overhead Height for Rooftop PV Systems

The experimental setup

Researchers from China's Guilin University of Electronic Technology have proposed a new model to investigate the impact of different overhead heights and tilt angles of PV modules on thermal and electrical performance and energy-saving of rooms.

The numerical model's accuracy was verified through an experimental model.

“A comprehensive study about the influence of various overhead heights and tilt angles on annual thermal and electric performance is lacking in the literature, while such a study is essential to understand the obstacles during the design of photovoltaic roofs,” said the team. “Moreover, previous studies concentrate on the energy-saving benefits of photovoltaic roofs in specific installation types, but there is a lack of research on the comprehensive performance in different installation types.”

The numerical model was developed in the Design Builder software, which can account for various energy exchanges inside and outside buildings, including multiple forms of heat transfer such as conduction, convection, and radiation. Local meteorological data from the northeastern Chinese city of Guilin were used.

An enclosed structure without PV on top is compared to one where the height and the tilt angle of PV modules are at play.

“The enclosure structure of the simulation room used single-layer plywood with a thickness of 1.5 cm,” said the group. “To simulate the reflection effect of aluminum foil around the building, a 0.01 cm thick reflective layer with a reflectivity of 0.90 is constructed around the enclosure structure. The photovoltaic module is a 200 W monocrystalline silicon photovoltaic panel.”

The experimental rig used plywood measuring 1,850 mm × 950 mm × 1,850 mm, with a thickness of 15 mm. Aluminum foil covered the surface of the test rig to reduce heat dissipation from the enclosing structure, and the PV modules had dimensions of 1,580 mm × 808 mm × 35 mm. It was measured against the simulated model with an overhead height of 200 mm and a tilt angle 25° for the PV panel.

“The root mean square error (RMSE) and mean absolute percentage error (MAPE) of the roof with photovoltaic modules are 0.16–2.35 and 0.90%–9.38%,” the scientists said. “Meanwhile, the RMSE and MAPE of the conventional roofs are 0.42–2.55 and 0.95%–8.89%. It is shown that the model established in this paper is reliable.”

Based on these results, the researchers changed the height and angle parameters in the simulation. To check the height impact, the academics fixed the panel to a parallel setting and checked it under 100 mm, 150 mm, and 200 mm. On the other hand, under a height of 200 mm, they checked different inclination angles. Namely, 0°, 15°, 20°, 25°, 30°, 35°, 40°, 45°.

“Due to the difference in solar elevation angle between summer and winter, the daily power generation (Epvr) of parallel overhead photovoltaic roofs is optimal (307.2 W/m2) in summer, and the Epvr decreases with the increase of tilt angle,” they explained. “The Epvr is the worst in winter, while the gain of an inclined overhead power supply gain shows a single peak trend. The gain of the inclined overhead photovoltaic roof at 40° reaches the best (234.6 W/m2) and then shows a downward trend.”

In summer, they also found that the PV roof's daily energy-saving efficiency is the highest, at 18.8%. As the tilt angle increases, the efficiency of inclined overhead roofs shows a downward trend. In winter, the optimal efficiency is found at an inclination of 40°, with 25.6%, while the parallel case is the lowest.

“The optimal power supply gain and comprehensive energy-saving efficiency are achieved with a 20° tilt angle throughout the year, with Epvr value of 79.4 kW.h/m2 and efficiency of 25.5%,” the team concluded. “The results indicate that adjusting the overhead height slightly affects the daily cooling load difference between conventional and photovoltaic roofs, with negligible impact on overall energy-saving efficiency (less than 0.2%).”

by pv magazine

[ 12 February 2025 / world-energy.org ]   
 

Lithium Iron Phoaphate (Lifepo4) Battery - Wall Mounted Energy Storage Lithium Battery - Nepal - Kathmandu

 SYSTEM
 Backup System
 Solar System
 Wind Power System
 Heating System

 AC & Ventilation
 System

 Cold Room System
 Charging System
 for
 Telecom/Industry
 Substation System

 
Voltage Stabilizer Nepal Kathmandu
 
UPS Nepal Kathmandu
 
Lithium iron battery Battery Nepal Kathmandu
 
Inverter Hybrid On-grid Off-Grid Energy Storage Solar Inverter Nepal Kathmandu
 
Solar Energy - Nepal Kathmandu
 
Complete Power Solution
 
 
 
 
Solar Water Heater Nepal Kathmandu Solar Energy Nepal Kathmandu Wind Power Nepal Kathmandu Power Generator Nepal Kathmandu Voltage Stabilizer Nepal Kathmandu Transformer Nepal Kathmandu AirConditioner Nepal Kathmandu Battery Nepal Kathmandu UPS System Nepal Kathmandu Rectifier Nepal Kathmandu
 
 
Link: The Official Portal of Goverment of Nepal Nepal Electricity Authority Nepal Alternative Energy Promotion Centre Nepal Telecom Nepal Department of Agriculture Nepal Department of Industry wow Nepal! Nepal Global Buying SIMONES Industries|Nepal Power Solution
  Nepal Goverment Nepal Electricity Authority Nepal Alternative Energy Promotion Centre Nepal Telecom Nepal Department of Agriculture Nepal Department of Industry wow-Nepal | Nepal Global Buying SIMONES Industries |Nepal Power Solution
 
Fair: Investment Summit Nepal Himalayan Hydro Expo Nepal Kathmandu China International Import Expo China Import and Export Fair China-South Asia Exposition Guangzhou Int’l Refrigeration, Air-Condition, Ventilation, Air-Improving Equipment Exhibition Guangzhou International Solar Photovoltaic Exhibition Asia Battery Sourcing Fair
  Investment Summit Nepal Himalayan Hydro Expo Nepal China International Import Expo China Import and Export Fair China-South Asia Exposition Int'l Refrigeration, Air-Condition Fair Int'l Solar Photovoltaic Exhibition Asia Battery Sourcing Fair
 
Copyright @ 2014 All right reserved. Simones Industries